Search results

1 – 1 of 1
Article
Publication date: 19 December 2018

Vineet Shibe and Vikas Chawla

This paper aims to perform the solid particle erosion studies in simulated coal-fired boiler conditions with a view to compare the erosion behavior of two different types of…

Abstract

Purpose

This paper aims to perform the solid particle erosion studies in simulated coal-fired boiler conditions with a view to compare the erosion behavior of two different types of detonation gun (D-Gun) sprayed cermet coating powders, that is, WC-12%Co and Cr3C2-25%NiCr on ASTM A36 steel and bare (uncoated) ASTM A36 steel.

Design/methodology/approach

Erosion studies were performed using an air jet erosion test rig at impingement angles of 45°, 60° and 90°. During the erosion studies weight loss, erosion rates in terms of volume loss (mm3/g) and measurement of erosion profiles were determined using optical profilometer.

Findings

Both cermet coatings had successfully protected the ASTM A36 steel from erosion at impingement angles of 45°, 60° and 90°. In the case of bare ASTM A36 steel, the erosion rates were maximal at an impingement angle of 45° and minimal at an impingement angle of 90°, thus depicting the peculiar erosion behavior of ductile materials. WC-12%Co coated specimens exhibited erosion behavior that is closer to the behavior of ductile materials. Cr3C2-25%NiCr coated specimens exhibited the maximum erosion rate at an impingement angle of 90° and minimum at an impingement angle of 45°, hence depicting the typical behavior of brittle materials.

Practical implications

It is expected that these results will contribute to the improvement of erosion resistance of induced draft fans, by the application of D-Gun sprayed WC-12%Co and Cr3C2-25%NiCr cermet coatings.

Originality/value

This paper evaluates the solid particle erosion behavior of bare and cermet-coated ASTM A36 steel which will be helpful in choosing the suitable cermet coating for induced draft fan applications.

Details

Industrial Lubrication and Tribology, vol. 71 no. 2
Type: Research Article
ISSN: 0036-8792

Keywords

1 – 1 of 1